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2 DEFINITIONS

1 Introduction

As part of the mission Megha-Tropiques (MT ; Desbois et al. [2]) and especially for the
Scanner for Radiation Budget (ScaRaB ; Kandel et al. [7]), we need to co-locate several
times its pixels with pixels of other instruments or gridded geophysical data such as
International Geosphere-Biosphere Programme (IGBP) surface type map.

The simplest co-location method, the �nearest-neighbour� method, is not accurate
enough for our needs. Thus we use methods that take pixels' point spread function (PSF)
into account (i.e. the real shape of pixels). In this document, we present two spatial co-
location methods that are more advanced than the nearest-neighbor one : Nagle-like and
2DI (de�ned in Section 2.3). These two methods are compared in Section B in terms of
quality and CPU time. We show several examples of use of the PSF-weighted co-location
in Section 7.

2 De�nitions

2.1 Point Spread Function

The following de�nition is taken from Dewitte et al. [3].
Consider a continuously varying scene viewed by a satellite instrument (radiometer)

with spectral characteristic Φchannel. Let δa, δc be the angles in two perpendicular direc-
tions under which the radiometer views the scene. The radiance measured by the satellite
is, assuming linearity of the measurement system, a weighted mean of the continuously
varying scene radiances L(scene).

Lchannel =

�
PSF (δa, δc)L(scene)dδadδc�

PSF (δa, δc)dδadδc
(1)

The weighting function PSF in (1) is called the (total) point spread function (PSF) of
the radiometer.

For a scanning radiometer in particular, an along scan angle δa and a cross scan angle
δc can be considered.

For a cross-track scanning radiometer, the cross-scan direction corresponds to the �ight
direction of the satellite. The (static) PSF of the radiometer in the nonscanning (static)
operation mode is called the optical �eld of view OFchannel(δa, δc) of the radiometer. The
dynamic PSF of the scanning radiometer is di�erent from the static PSF [11].

If the global time impulse response of the detector (global means: sensor + electronics)
is h(t) and if the instrument is scanning with an angular scan speed vscan , the equivalent
global angular impulse response of the detector is given by

hangular(δa) = h(vscant) (2)

The total (dynamic) PSFchannel(δa, δc) of the detector is obtained by convolution of
the optical �eld of view OFchannel(δa, δc) with the equivalent angular impulse response
hangular(δa)

PSFchannel(δa, δc) = OFchannel ∗ hangular(δa) (3)

1



2.2 PSF weighted co-location 2 DEFINITIONS

2.2 PSF weighted co-location

We shall use the term �master� to denote the instrument onto whose footprint the obser-
vations of a second instrument, the �slave�, are to be projected.

Let's consider the following example to illustrate the co-location principle. We want
to simulate the data seen by a ScaRaB pixel (green pixel in Figure 1 on page 2) from data
provided by a geostationary satellite (red pixels in Figure 1 on page 2).

Figure 1: Representation of a square-shaped pixel (green) that overlap with 19 round-
shaped pixels. The PSF weighted co-location algorithm calculates the weight of slave
(red) pixels inside the master (green) one. No particular scale is respected in this �gure.

These pixels have di�erent sizes, shapes, weighting functions, and, as they may be seen
from di�erent points of view (two di�erent platforms), their on-ground footprints are dis-
torted in di�erent ways. The PSF-weighted co-location aims to estimate the contribution
of each slave (red) pixel inside the master (green) one.

The co-location rely on spherical geometry to take pixels distortion into account. The
main part of the geometry formulas are taken from Capderou [1].

To estimate the weights to give to each slave pixel, several integration points are
de�ned in the master pixel domain (dashed rectangle in Figure 1 on page 2) according
to the chosen co-location method and integration rules. For each integration point the
PSF of the master pixel and the slaves are calculated and accumulated. From these
accumulated weights, it is possible to calculate several statistics. The most obvious one
would be the arithmetic mean.

2.3 Presentation of the spatial co-location methods

2.3.1 Nagle-like method

In Nagle and Holz [9], a co-location method is proposed. One considers master pixels as
ellipsoids having a linear weighting function going from 1 at the center to 0 at the edge. A
weighted mean of the slave pixels whose centers fall in the ellipsoid is made. This method
considers the slave pixels as simple points. By adding to this method the possibility
to de�ne pixels of any shape and any weighting function (or point spread function), we
de�ne the Nagle-like method. We show in Section B that this method is not reliable when
slave pixels are not small compared to the master one. In this case one should prefer 2DI
method presented below.
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2 DEFINITIONS 2.4 Pixel descriptions

2.3.2 2DI method

The 2DI method runs through the master pixel's area through an independent integration
mesh (not based on slave pixels coordinates). This method gives the possibility to consider
slave pixels not just as discrete points, but as also having their own PSF to create a
weighting surface whose resolution can be adjusted to the user's needs. This method
is interesting when slave pixels have a similar size or are bigger than master pixels. In
the other hand, it requires more CPU time. For this method, we implemented three
integration rules which are presented in Section A and compared in Section B.

2.4 Pixel descriptions

2.4.1 MADRAS

Viltard [12] gives the dimensions of MADRAS (Microwave Analysis and Detection of
Rain and Atmospheric Structures ; Desbois et al. [2]) instrument's pixels for the di�erent
channels. Pixels' cross-scan sizes are 6 km, 10 km and 40 km according to the channel.
Figure 3 on page 4 shows a Madras conical swath with pixels of channels 36.5, 23.8 and
18.6 GHz.

2.4.2 ScaRaB

ScaRaB instrument's pixel PSF is described in Dewitte et al. [3]. The Figure 2 on page
3 illustrates it.
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Figure 2: Representation of the ScaRaB instrument PSF. The axis are given in km at
sub-satellite point (SSP), assuming the MT altitude is 865.5 km.
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2.4 Pixel descriptions 2 DEFINITIONS

Figure 3: PSF accumulation of the 51 pixels of a ScaRaB MT orthogonal swath and the
56 pixels of a MADRAS MT conical swath. Satellite is situated at 0°N, 0°E. One can see
how the pixels are distorted and overlaps. The MADRAS pixels are modeled by circles of
diameter 26.2 km SSP (67.25 km × 40 km once distorted) (Viltard [12]). Pixels positions
are provided by Ixion software (Capderou [1]).

2.4.3 SAPHIR

The pixels of SAPHIR (Sondeur Atmosphérique du Pro�l d'Humidité Intertropicale par
Radiométrie ; Eymard et al. [4]) instrument are described circles of diameter 10 km SSP.
Each othogonal swath is made of 128 pixels.

2.4.4 SEVIRI and GERB

SEVIRI (Spinning Enhanced Visible and Infrared Imager ; Schmetz et al. [10]) and GERB
(Geostationary Earth Radiation Budget ; Harries et al. [5]) instruments aboard Meteosat
Second Generation (MSG) have pinch-shaped pixels (Figure 4 on page 5). SEVIRI pixels
are described in Just [6] ; they are 6 km SSP wide. GERB pixels are described in Mueller
et al. [8] ; they are 45.5 km SSP wide.

4



4 ANGULAR CO-LOCATION 2.5 Notation
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Figure 4: Pinch-shaped PSF of FWHM 1. This one is used for SEVIRI and GERB pixels.

2.5 Notation

The following abbreviations would be used in this document :

FWHM : Full Width at Half Maximum

MT : Megha-Tropiques

PSF : Point Spread Function

SSP : Sub-Satellite Point

VAA : Viewing Azimuth Angle

VZA : Viewing Zenith Angle

3 Temporal co-location

Slave pixels' selection may also rely on temporal co-location. In this case, one de�ne for
each master pixel a time threshold inside the slaves must remains to be co-located.

4 Angular co-location

Let's introduce several angles used in this section :
Figure 5 on page 6 shows angles relevant to the satellite's view and swath. The swath

angle f is de�ned as the angle between the line of sight from the satellite (MP ) and the
nadir (MN).

f = (MN,MP ) (4)

The viewing zenith angle ζ is the angle at which the satellite M (or the sun for solar
zenith angle) is seen from the surface P , measured from local vertical.

5



4 ANGULAR CO-LOCATION

ζ = (OP, PM) (5)

We also use the angle α, which is the angle at the center of the Earth O de�ned by

α = (ON,OP ) (6)

These three angles are related by

f + α = ζ (7)

Swath angle and viewing zenith angle are related by

sin ζ = η sin f (8)

where η is the relative altitude of the satellite de�ned by

η =
altitude+REarth

REarth

=
MN +NO

NO
(9)

ζ ζs

α

f

O

P
N

M

Figure 5: Representation of several viewing and solar angles. f : swath angle, ζ : viewing
zenith angle, ζS : solar zenith angle, α : angle at the Earth's center.

Figure 6 on page 7 shows azimuth angles. Azimuth angles are de�ned in the horizontal
plane. Viewing azimuth angle β is the angle between north direction and the sub-satellite
point N (or the sun for solar azimuth angle) as seen from P .

β = (PNorth, PN) (10)
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5 PIXEL DISTORTION

North

βs

β

RAA

P

N

Figure 6: On-ground projection of several viewing and solar angles. β : viewing azimuth
angle, βS: solar azimuth angle, RAA : relative azimuth angle.

In some cases we need to co-locate only pixels observed on particular angular con-
ditions. For example, shortwave radiance emitted by a scene will vary with the viewing
zenith angle and viewing azimuth angle. To be compared, the line of sight of two satellites
must remain in a cone de�ned by a maximum scattering angle.

Figure 7 on page 7 shows the scattering angle γ. It is de�ned from viewing zenith
angle ζ and viewing azimuth angle β this way :

cos γ = cos ζA · cos ζB + sin ζA · sin ζB · cos(βA − βB) (11)

A

B

γ

θ

P

Figure 7: To compare measures observed from a satellite A and a satellite B which observe
a point P, the scattering angle γ must be smaller than the threshold θ.

5 Pixel distortion

The PSF generally depends on the angles in two perpendicular directions under which
the radiometer views the scene. One must consider the projection of this function on the
ground. The footprint's surface of a pixel will increase as soon as the viewing angle di�ers
from nadir (|VZA| > 0).

7



6 STATISTICS

Here are the expressions that describe pixels' distortion in the direction towards the
satellite K and perpendicularly L :

K(α, η) =
1

η − 1
· η

2 − 2η cosα + 1

η cosα− 1
(12)

L(α, η) =
1

η − 1
·
√
η2 − 2η cosα + 1 (13)

where η is the relative altitude (9) of the satellite and α is the angle at the center of the
Earth (6) as shown on Figure 5 on page 6.

6 Statistics

At this point we have a list of slave pixels that overlap a master one, the values associated
to these and their weights. From this we can calculate a weighted mean :

µ =

∑
i value i · weight i∑

i weight i

(14)

Or the standard deviation :

σ =

√∑
i

(
(value i − µ)2 · weight i

)∑
i weight i

(15)

One can also compute a histogram by accumulating weights of values entering in the
same bin. Then the most representative bin is the one having the higher weight. This is
particularly useful for discrete data as scene types. As an example, the Figure 8 on page
8 shows a histogram of IGBP 10' resolution product co-located inside a circle of radius
250 km, centered on Mandalay, Myanmar. The mode (12) stands for �Crops�.

Figure 8: Histogram of IGBP classes, colored by class, co-located 250 km around Man-
dalay, Myanmar

8



7 EXAMPLES

7 Examples

7.1 GEO to LEO

7.1.1 SEVIRI sub-pixel clear area percent coverage to ScaRaB

In this example, the PSF-weighted co-location method is used to estimate the ratio of
clear-sky SEVIRI pixels inside ScaRaB pixels. Data comes from SAFNWC discrete classi-
�cations where clear-sky scenes are given the value �1� and overcast scenes are given value
�0�. These zeros and ones are averaged inside each ScaRaB pixel to obtain a continuous
value between 0 and 1.

SEVIRI pixels are considered as 6 km SSP FWHM pinches [6].

Figure 9: Clearsky ratio in ScaRaB pixels for 1 day (2006-08-13). black = overcast, white
= clear

7.1.2 GERB to ScaRaB

GERB pixels are considered as 44.5 km SSP FWHM pinches [8]. The Figure 10 on page
10 is the result of the co-location of a GERB pixel inside a 1.5° box, both centered at
48.436N 2.203E (near Étampes). You can notice how the GERB pixel is distorted.

9



7.2 Gridded product to LEO 7 EXAMPLES

Figure 10: A GERB pixel located at 48.436N 2.203E appears elongated when seen in
Mercator projection, colored by PSF

Figure 11 on page 10 shows ScaRaB pixels that match a scattering angle co-angularity
(usually used to co-locate short-wave radiances) constrained at ±5° during one MT repeat
cycle (7 days)

Figure 11: ScaRaB / SEVIRI / GERB matches during 7 days colored by VAA. Scattering
angle co-angularity constrained at ±5°

7.2 Gridded product to LEO

7.2.1 IGBP to ScaRaB

The Figure 12 on page 11 is the result of the co-location between a ScaRaB/RESURS
orbit and the IGBP 10' resolution scene type product. ScaRaB pixels are given the most
representative IGBP value, as explained in Section 6.

10



7 EXAMPLES 7.2 Gridded product to LEO

Figure 12: ScaRaB/RESURS co-located during 1 day (1999-03-01) with IGBP 10' reso-
lution product

7.2.2 Albedo to ScaRaB

The Figure 13 on page 11 shows the same ScaRaB orbit than in Figure 12 on page 11
co-localized with a 10' resolution albedo product. ScaRaB pixels are given the arithmetic
mean of co-located albedo values.

Figure 13: ScaRaB/RESURS co-located during 1 day (1999-03-01) with albedo 10' reso-
lution product

11



7.3 LEO to LEO 9 CONCLUSION

7.3 LEO to LEO

7.3.1 CERES to ScaRaB

The following example illustrate the VZA angular co-location between ScaRaB (MT) and
CERES (Clouds and the Earth's Radiant Energy System ; Wielicki et al. [13]) (Terra)
during seven days.

Figure 14: ScaRaB / CERES matches during 7 days ±5 minutes, colored by local mean
time. Viewing zenith angle co-angularity constrained at ±10° (ie. longwave radiance
co-location)

8 Documentation

For further technical reference about the usage of the PSF-weighted co-location library's
programming interface, consult : http://www.lmd.polytechnique.fr/~ngif/coloc/

html/

9 Conclusion

The presented algorithms are implemented in an object-oriented software library written
in C++ (Python interface available thanks to SWIG) which makes it very modular and
versatile. Thanks to the abstraction of the code, it is easy to add extra pixel de�nitions
without even seeing or re-compiling the existing part of the code.

It makes possible to co-locate any combination of geophysical data (gridded data,
di�erent pixel geometries). According to what is co-located, one method have to be
chosen over the other. Nagle-like or 2DI. For this last one, we showed that the trapezoidal
integration rule is the best.

12
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A APPENDIX 1 : INTEGRATION RULES

A Appendix 1 : Integration rules

A.1 Monte-Carlo rule

The Monte-Carlo rule consists in choosing the position of the integration points randomly
inside the pixel's domain (dashed rectangle on Figure 1 on page 2).

�
Ω

f(x, y)dxdy =
1

N

N∑
i=1

f(xi, yi) (16)

The Figure 15 on page 14 illustrates a way of calculating the surface of a circle with
the Monte-Carlo integration.

Figure 15: An illustration of Monte Carlo integration. In this example, the domain D is
the inner circle and the domain E is the square. Because the square's area can be easily
calculated, the area of the circle can be estimated by the ratio (0.8) of the points inside
the circle (40) to the total number of points (50), yielding an approximation for π/4 ≈ 0.8
(source: Wikipedia)

For the co-location purpose, we use the pixels' PSF instead of the circle formula of
the previous example.

Note that it exists adaptive Monte-Carlo integration methods such as MISER algo-
rithm that will subdivide the domain in equal parts and concentrate the random points
in the subdivisions that presents a higher variance.

A.2 Trapezoidal rule

The trapezoidal rule works by approximating the region under the graph of the function
f(x) as a trapezoid and calculating its area.

Figure 16: Illustration of the composite trapezoidal rule in 1D (source: Wikipedia)

14



A APPENDIX 1 : INTEGRATION RULES A.3 Simpson's rule

� b

a

f(x)dx ≈ 1

2

b− a
n

[
f(a) + f(b) + 2

n−1∑
i=1

f(xi)

]
(17)

This method also works for 2-dimensional functions.
The trapezoidal rule consists in meshing the pixel's domain regularly.

� b

a

� d

c

f(x, y)dxdy ≈ 1

4

b− a
m

d− c
n

[
f(a, c) + f(a, d) + f(b, c) + f(b, d) +

2
m−1∑
i=1

f(xi, c) + 2
m−1∑
i=1

f(xi, d) + 2
n−1∑
j=1

f(a, yj) + 2
n−1∑
j=1

f(b, yj) + 4
n−1∑
j=1

m−1∑
i=1

f(xi, yj)

]
(18)

where m and n are the numbers of elements in the mesh in x and y dimension respectively.

A.3 Simpson's rule

The Simpson's rule works by approximating the region under the graph of the function
f(x) as a quadratic function.

Figure 17: Simpson's rule can be derived by approximating the integrand f(x) (in blue)
by the quadratic interpolant P(x) (in red) (source: Wikipedia)
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B APPENDIX 2 : SENSIBILITY TESTS

B Appendix 2 : Sensibility tests

The following tests were made with the version 2.15.3 and 2.16 of the co-location library.
In this section, the term �Nagle-like� makes reference to the Nagle algorithm improved
with custom master pixel PSF and where slave pixels are weighted by their surface.

B.1 Projection of a CERES orbit in a regular grid

In this test, one projects the CERES (Terra-FM1) orbit of 2006 august the 1st between 13
and 14 UTC in an 1 degree resolution regular grid over Atlantic ocean (60N-60S, 90W-0E
at the boxes' edges). The CERES pixels' PSF is based on SSF Collection Guide.

As a reference, the number of integration points per box is raised to 250,000. The
arithmetic mean of �Clear Sky Percentage� and �TOA LW Flux� SSF's are calculated.

Figure 18: Gridded Clear Sky Percentage

16



B APPENDIX 2 : SENSIBILITY TESTSB.1 Projection of a CERES orbit in a regular grid

Figure 19: Gridded �Mean PSF�

Mean PSF is calculated this way :∑nIP
i=1

(∑nB
j=1 (PSFB,ij ) · PSFA,i

)
∑nIP

i=1 (PSFA,i)
(19)

where index A refers to the master pixel (a 1 degree box here), B refers to the slave pixels
(CERES pixels here), nIP is the number of integration points and nB the number of
salve pixels that overlaps master one. A value of 6 means that 6 �layers� of CERES pixels
overlap in the 1° box.

The following statistics give the mean and standard deviation of the di�erence between
the reference (in blue in the tables) and the other runs for the 3582 boxes that have been
co-located.

Monte Carlo's standard deviation is proportional to 1/
√
N .

2DI
Nagle-like

Integration pts
Monte Carlo Trapezoidal

Mean Stdev Mean Stdev Stdev
250000 0,000 0,049 0,000 0,000

2,139

40000 0,000 0,097 0,000 0,029
10000 0,001 0,188 -0,001 0,052

2500 0,003 0,368 0,001 0,146
900 -0,006 0,667 0,001 0,365
400 0,014 1,014 0,008 0,626
225 0,024 1,298 -0,002 0,297
100 0,037 1,989 -0,006 1,307

Table 1: Clear Area Percentage statistics

17



B.2 Projection of a SEVIRI image in an orbitB APPENDIX 2 : SENSIBILITY TESTS

2DI
Nagle-like

Integration pts
Monte Carlo Trapezoidal

Mean Stdev Mean Stdev Stdev
250000 0,000 0,029 0,000 0,000

1,286

40000 -0,001 0,057 0,000 0,016
10000 0,000 0,115 0,000 0,028

2500 0,001 0,241 -0,001 0,075
900 0,001 0,388 0,000 0,180
400 0,005 0,567 0,004 0,318
225 0,002 0,805 0,002 0,166
100 0,017 1,186 -0,005 0,710

Table 2: TOA LW Flux statistics

These tables shows that trapezoidal integration rule gives lower biases and standard
deviations.

B.2 Projection of a SEVIRI image in an orbit

Let's see the in�uence of the number of integration points and the integration rule on the
co-location CPU time. In this test, one will project SEVIRI images in a synthetic ScaRaB
MT orbit, the 1st of june 2006 between 12 and 13 UTC. Four SEVIRI images are used,
co-located at ± 7,5 minutes.

The given times are CPU times. Real execution time is usually lower since the code
take part of multi-core processors.
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Figure 20: SEVIRI - ScaRaB Co-location CPU times

These results show that in both cases, CPU time is linearly proportional to the number
of integration points. Trapezoidal rule is slightly faster than Monte-Carlo.

18



B APPENDIX 2 : SENSIBILITY TESTSB.3 Projection of a GERB image in an orbit

2DI
Nagle-like

Integration pts Monte Carlo Trapezoidal Simpson's
36 3,7 1,48 2,86

0,165

64 2,737 0,694 1,479
100 2,214 0,374 0,930
169 1,677 0,164 0,345
225 1,423 0,109 0,247
324 1,190 0,053 0,176
400 1,091 0,037 0,129
625 0,882 0,023 0,058
784 0,773 0,015 0,048

1024 0,686 0,013 0,032
2500 0,422 0,007 0,010
5041 0,305 0,006 0,006

10000 0,205 0,000 0,002

Table 3: Brightness temperature's standard deviation VS number of integration points
for three 2D integration rules and Nagle-like algorithm
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Figure 21: Brightness temperature's standard deviation

Trapezoidal rule converges faster than other 2D integration rules. Anyway Nagle-like
algorithm gives a value as good as 169 integration points with trapezoidal rule for an CPU
time more than 16 times shorter.

In this example where SEVIRI's pixels are small (6 km SSP) compared to ScaRaB's
(40 km SSP), using Nagle-like algorithm is a good choice.

B.3 Projection of a GERB image in an orbit

Here is the same example than in Section B.2 except we will use GERB images
Let's notice that GERB's co-location is about 30 times faster than SEVIRI's.
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B.3 Projection of a GERB image in an orbitB APPENDIX 2 : SENSIBILITY TESTS
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Figure 22: GERB - ScaRaB Co-location CPU times

2DI Nagle-like
Integration ptsMonte Carlo Trapezoidal Simpson's

4,610

36 2,06 0,31 1,1
64 1,483 0,067 0,494

100 1,170 0,031 0,268
169 0,916 0,014 0,048
225 0,775 0,007 0,025
324 0,654 0,006 0,019
400 0,585 0,004 0,012
625 0,481 0,002 0,005
784 0,405 0,002 0,004

1024 0,377 0,001 0,002
2500 0,235 0,000 0,001
5041 0,167 0,000 0,000

10000 0,120 0,000 0,000

Table 4: Longwave �ux's standard deviation VS number of integration points for three
2D integration rules and Nagle-like algorithm
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Figure 23: Longwave �ux temperature's standard deviation

Here again, Trapezoidal rule is the one which converges the faster. In this example
where GERB pixel are as big (45 km SSP) as ScaRaB (40 km SSP) the results given by
Nagle-like algorithm are not reliable.

B.4 Conclusion

This part revealed two points :

1. Nagle-like algorithm can give good results quickly when slave pixels are small com-
pared to master pixels. It is faster since the slave pixels' PSF is calculated only once,
at their center, (no need to rotate and distort the pixels). It gives better results
because it ensures that all slave pixel are sampled, there is no chance to sub-sample
them when there is more of them than integration points. In the other hand, if slave
pixels are as big or bigger than master pixel, the 2D integration method should be
preferred.

2. If the 2D integration method is chosen, trapezoidal integration rule will give better
results than other rules, for the same amount of CPU time.

21



REFERENCES REFERENCES

References

[1] M. Capderou. Satellites, Orbits and Missions. Springler Verlag, Berlin, Paris, 2005.
ISBN 2287213171.

[2] M. Desbois, M. Capderou, L. Eymard, R. Roca, N. Viltard, M. Viollier, and
N. Karouche. Megha-Tropiques: un satellite hydrométéorologique franco-indien.
2007.

[3] S. Dewitte, P. Boekaerts, and F. Sirou. Determination of the ScaRaB FM1 broadband
channel point spread functions. Geoscience and Remote Sensing, IEEE Transactions

on, 37(4):2004�2010, July 1999. ISSN 0196-2892. doi: 10.1109/36.774711.

[4] L. Eymard, M. Gheudin, P. Laborie, F. Sirou, C. Le Gac, J. P. Vinson, S. Franquet,
M. Desbois, F. Karbou, R. Roca, N. Scott, and P. Waldteufel. The SAPHIR humidity
sounder. Technical Report 24, IPSL, 2002.

[5] J. E. Harries, J. E. Russell, J. A. Hana�n, H. Brindley, J. Futyan, J. Rufus, S. Kellock,
G. Matthews, R. Wrigley, A. Last, J. Mueller, R. Mossavati, J. Ashmall, E. Sawyer,
D. Parker, M. Caldwell, P. M. Allan, A. Smith, M. J. Bates, B. Coan, B. C. Stewart,
D. R. Lepine, L. A. Cornwall, D. R. Corney, M. J. Ricketts, D. Drummond, D. Smart,
R. Cutler, S. Dewitte, N. Clerbaux, L. Gonzalez, A. Ipe, C. Bertrand, A. Jouko�,
D. Crommelynck, N. Nelms, D. T. Llewellyn-Jones, G. Butcher, G. L. Smith, Z. P.
Szewczyk, P. E. Mlynczak, A. Slingo, R. P. Allan, and M. A. Ringer. The Geostation-
ary Earth Radiation Budget project. Bulletin of the American Meteorological Society,
86(7):945�960, 2011/09/06 2005. ISSN 0003-0007. doi: 10.1175/BAMS-86-7-945.
URL http://dx.doi.org/10.1175/BAMS-86-7-945.

[6] D. Just. SEVIRI instrument level 1.5 data. In First MSG RAO Workshop, 17-19

May 2000, Bologne, Italy, 2000.

[7] R. Kandel, M. Viollier, P. Raberanto, J. P. Duvel, L. A. Pakhomov, V. A. Golovko,
A. P. Trishchenko, J. Mueller, E. Raschke, R. R. Stuhlmann, and International
Scarab Scienti�c Working Group (Isswg). The ScaRaB earth radiation budget
dataset. Bulletin of the American Meteorological Society, 79:765�783, may 1998.
ISSN 0003-0007. doi: 10.1175/1520-0477(1998)079<0765:TSERBD>2.0.CO;2. URL
http://dx.doi.org/10.1175/1520-0477(1998)079<0765:TSERBD>2.0.CO;2.

[8] J. Mueller, R. Stuhlmann, K. Dammann, R. Hollmann, J. E. Harries, S. Kellock,
R. Mossavati, R. Wrigley, D. Crommelynck, S. Dewitte, P. Allan, M. Caldwell, and
E. Sawyer. GERB: An earth radiation budget instrument on second generation
meteosat. Advances in Space Research, 24(7):921�924, 1999. ISSN 0273-1177. doi:
10.1016/S0273-1177(99)00356-7. URL http://www.sciencedirect.com/science/

article/pii/S0273117799003567. Satellite Applications for Energy Budgets and
the Hydrological Cycle.

[9] F. W. Nagle and R. E. Holz. Computationally e�cient methods of collocating
satellite, aircraft, and ground observations. Journal of Atmospheric and Oceanic

Technology, 26(8):1585�1595, 2009. doi: 10.1175/2008JTECHA1189.1. URL http:

//journals.ametsoc.org/doi/abs/10.1175/2008JTECHA1189.1.

22

http://dx.doi.org/10.1175/BAMS-86-7-945
http://dx.doi.org/10.1175/1520-0477(1998)079<0765:TSERBD>2.0.CO;2
http://www.sciencedirect.com/science/article/pii/S0273117799003567
http://www.sciencedirect.com/science/article/pii/S0273117799003567
http://journals.ametsoc.org/doi/abs/10.1175/2008JTECHA1189.1
http://journals.ametsoc.org/doi/abs/10.1175/2008JTECHA1189.1


REFERENCES REFERENCES

[10] J. Schmetz, P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier.
An introduction to Meteosat Second Generation (MSG). Bulletin of the Ameri-

can Meteorological Society, 83(7):977�992, 2011/09/15 2002. ISSN 0003-0007. doi:
10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2. URL http://dx.doi.org/

10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

[11] G. L. Smith. E�ects of time response on the point spread function of a scanning
radiometer. Applied Optics, 33(30):7031, October 1994. doi: 10.1364/AO.33.007031.
URL http://ao.osa.org/abstract.cfm?URI=ao-33-30-7031.

[12] N. Viltard. Synthesis of the MADRAS characteristics relevant for radiative transfert
application. 2007.

[13] B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E.
Cooper. Clouds and the Earth's Radiant Energy System (CERES): An earth ob-
serving system experiment. Bulletin of the American Meteorological Society, 77(5):
853�868, 1996.

23

http://dx.doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2
http://ao.osa.org/abstract.cfm?URI=ao-33-30-7031


MTTM
Megha-Tropiques Technical Memorandum

Editorial Committee

Sophie Cloché

Michel Capderou

Laboratoire de Météorologie Dynamique
(LMD / IPSL)
Ecole Polytechnique
F-91128 Palaiseau
France

Sophie.Bou�es-Cloche@ipsl.jussieu.fr
http://meghatropiques.ipsl.polytechnique.fr/available-documents/mttm/index.html

mailto:Sophie.Bouffies-Cloche@ipsl.jussieu.fr
http://meghatropiques.ipsl.polytechnique.fr/available-documents/mttm/index.html

	Introduction
	Definitions
	Point Spread Function
	PSF weighted co-location
	Presentation of the spatial co-location methods
	Nagle-like method
	2DI method

	Pixel descriptions
	MADRAS
	ScaRaB
	SAPHIR
	SEVIRI and GERB

	Notation

	Temporal co-location
	Angular co-location
	Pixel distortion
	Statistics
	Examples
	GEO to LEO
	SEVIRI sub-pixel clear area percent coverage to ScaRaB
	GERB to ScaRaB

	Gridded product to LEO
	IGBP to ScaRaB
	Albedo to ScaRaB

	LEO to LEO
	CERES to ScaRaB


	Documentation
	Conclusion
	Acknowledgments
	Appendix 1 : Integration rules
	Monte-Carlo rule
	Trapezoidal rule
	Simpson's rule

	Appendix 2 : Sensibility tests
	Projection of a CERES orbit in a regular grid
	Projection of a SEVIRI image in an orbit 
	Projection of a GERB image in an orbit
	Conclusion

	References

